Явления интерференции и дифракции волн скачать презентацию. Интерференция


Явление интерференции происходит при взаимодействии двух и более волн одинаковой частоты, распространяющихся в различных направлениях. При этом оно наблюдается и у волн, распространяющихся в средах, и у электромагнитных волн. То есть интерференция является свойством волн как таковых и не зависит ни от свойств среды, ни от ее наличия. Интерференция


Устойчивая картина чередования максимумов и минимумов колебаний точек среды при наложении когерентных волн Когерентные волны – это волны одинаковой частоты с постоянной разностью фаз Интерференция С интерференционными явлениями мы сталкиваемся довольно часто: радужная окраска масляных пятен на асфальте, окраска замерзающих оконных стекол, причудливые цветные рисунки на крыльях некоторых бабочек и жуков все это проявление интерференции света.


Дифракция При явлении дифракции происходит разложение сложного света. Положение максимумов и минимумов, составляющих дифракционную картину, зависит от длины световой волны. Поэтому при наблюдениях в сложном свете, например в белом, где представлены различные длины волн, дифракционные максимумы для различных цветов окажутся на разных местах.




Дифракция Явление дифракции накладывает ограничения на применение законов геометрической оптики: Закон прямолинейного распространения света, законы отражения и преломления света выполняются достаточно точно только, если размеры препятствий много больше длины световой волны. Дифракция накладывает предел на разрешающую способность оптических приборов: - в микроскопе при наблюдении очень мелких предметов изображение получается размытым - в телескопе при наблюдении звезд вместо изображения точки получаем систему светлых и темных полос.


Диспероссия Диспе́россия волн - различие фазовых скоростей волн в зависимости от их частоты. Диспероссия волн приводит к тому, что волновое возмущение произвольной негармонической формы претерпевает изменения (диспергирует) по мере его распространения. Иногда под дисперсией волны понимают процесс разложения широкополосного сигнала в спектр, например, при помощи дифракционных решёток.


Диспероссия Красный закат, один из результатов разложения света в атмосфере Земли. Причиной этого явления является зависимость показателя преломления газов, составляющих земную атмосферу, от длины волны света. Радуга, чьи цвета обусловлены дисперсией, один из ключевых образов культуры и искусства. Благодаря дисперсии света, можно наблюдать цветную «игру света» на гранях бриллианта и других прозрачных гранёных предметах или материалах. В той или иной степени радужные эффекты обнаруживаются достаточно часто при прохождении света через почти любые прозрачные предметы. В искусстве они могут специально усиливаться, подчеркиваться.



Поляризация Поляризованной волной называется такая поперечная волна, в которой колебания всех частиц происходят в одной плоскости. Такую волну можно получить с помощью резинового шнура, если на его пути поставить преграду с тонкой щелью. Щель пропустит только те колебания, которые происходят вдоль нее.




Закон Малюса Линейно поляризованный свет можно наблюдать, например, в излучении лазера. Другой способ получения линейно поляризованного света состоит в пропускании естественного света через поляроид(поляризационный светофильтр), который свободно пропускает компоненту света, поляризованную вдоль выделенного направления, и полностью поглощает свет с перпендикулярной поляризацией. Если на такой поляроид падает линейно поляризованная волна, то интенсивность I прошедшего света будет зависеть от угла а между направлением поляризации падающего света и выделенным направлением самого поляроида следующим образом: I = I 0 cos 2 a


Эллипсометрия Эллипсометрия - совокупность методов изучения поверхностей жидких и твёрдых тел тел по состоянию поляризации светового пучка, отражённого этой поверхностью и преломлённого на ней. Падающий на поверхность плоско поляризованный свет приобретает при отражении и преломлении эллиптическую поляризацию вследствие наличия тонкого переходного слоя на границе раздела сред. Зависимость между оптическими постоянными слоя и параметрами эллиптически поляризованного света устанавливается на основании Френеля формул. На принципах эллипсометрии построены методы чувствительных бесконтактных исследований поверхности жидкости или твёрдых веществ, процессов адсорбции, коррозии и др.



«Преломление света» - Преломление света в разных жидкостях и стекле. Ход световых лучей Световые лучи и принцип Ферма. Геометрическое место всех таких фокусов негомоцентрических пучков называется каустикой. На фольгу выливалась ртуть, которая образовывала с оловом амальгаму. Характеристики света. Набор близких лучей света может рассматриваться как пучок света.

«Распространение света» - Ход лучей в тонкой линзе. Оптические приборы. 2. Луч света падает на поверхность воды под углом 300 к горизонту. Если изображение: -мнимое f < 0 -действительное f > 0 Если линза: -собирающая F > 0 -рассеивающая F < 0. D - расстояние от предмета до линзы. Линзы. Образование тени и полутени.

«Физика Миражи» - Вот одна из картин, которую можно увидеть. Исполнитель: ученик 9 класса Ремешевский Виталий Сергеевич. Астигматизм. Смешанные иллюзии. Левитация. Руководитель: учитель физики Долматова Татьяна Геннадьевна. Естественные, или созданные природой (например, мираж); Перевёртыши. В результате возникают два изображения.

«Дифракция света» - План урока: Дифракционные решетки используются для разложения электромагнитного излучения в спектр. Дифракция механических волн. Условия когерентности световых волн. Таким образом, волна после прохождения через щель и расширяется и деформируется. Опыт Т. Юнга. 1802 г. Дифракция света сопровождается интерференцией.

«Глаз человека» - Что такое полярное сияние? Почему мы иногда видим то, чего нет на самом деле? Область формирования радуги. А круги, ведь, совсем неподвижны. sin ? / sin ? = n1 / n2. Поэтому наблюдатель и видит изображение искаженным. Закон преломления света. Вывод: 90% информации приходит в наш мозг через глаза. Мы узнали, что законы оптики описываются с помощью тригонометрических функций.

«Интерференция и дифракция» - Бипризма Френеля. А) от тонкой проволочки; б) от круглого отверстия; в) от круглого непрозрачного экрана. Каждая точка волновой поверхности является источником вторичных сферических волн. Просветление оптики n(плёнки)

Всего в теме 7 презентаций

ДИФРАКЦИЯ СВЕТА

УРОК ФИЗИКИ - ИЗУЧЕНИЕ НОВОГО МАТЕРИАЛА, С ИСПОЛЬЗОВАНИЕМ

ИНФОРМАЦИОННО-КОММУНИКАЦИОННЫХ

ТЕХНОЛОГИЙ

ПРЕПОДАВАТЕЛЬ:

КУРНОСОВА СВЕТЛАНА АЛЕКСАНДРОВНА


ПЛАН УРОКА

1. Дифракция механических волн.

2. Дифракция света:

а) Опыт Юнга;

б) Принцип Гюйгенса-Френеля;

в) Условия наблюдения дифракции света.

3. Применение дифракции света.

4. Дифракционная решетка.

5. Закрепление урока.

6. Домашнее задание.


ЦЕЛЬ УРОКА

1. Изучить условия возникновения дифракции волн.

2. Объяснить явление дифракции света, используя принцип Гюйгенса-Френеля.

3.Убедиться, что дифракция свойственна свету.


ДИФРАКЦИЯ

МЕХАНИЧЕСКИХ ВОЛН

ПРОЯВЛЯЕТСЯ КАК:

нарушение

целостности фронта световой волны

из-за неоднородности среды

нарушение закона

прямолинейного

распространения света.



ЗАДАЧИ

1.ПОЧЕМУ МОЖНО СЛЫШАТЬ СИГНАЛ АВТОМОБИЛЯ ЗА УГЛОМ ЗДАНИЯ, КОГДА САМОЙ МАШИНЫ НЕ ВИДНО?

2. ПОЧЕМУ МЫ КРИЧИМ В ЛЕСУ, ЧТОБЫ НЕ ПОТЕРЯТЬ СВОИХ ДРУЗЕЙ?


Когда размеры препятствий малы, волны, огибая края препятствий, смыкаются за ними. Способность огибать препятствия обладают звуковые волны


"Свет распространяется или рассеивается не только

прямолинейно, отражением и преломлением,

но и также четвертям способом - дифракцией" (Ф.Гримальди 1665г.)

Дифракционные явления были хорошо известны еще во времена Ньютона.

Первое качественное объяснение явления дифракции на основе волновых представлений было дано английским ученым Т. Юнгом.


ОПЫТ Т. ЮНГА

Свет от Солнца падал на экран с узкой щелью S.Прошедшая через щель световая волна затем падала на второй экран уже с двумя щелями S1 и S2. Когда в область перекрытия световых волн, идущих от S1 и S2 помещался третий экран, то на нем появлялись параллельные интерференционные полосы, содержащие (по словам Юнга) «красивое разнообразие оттенков, постепенно переходящие один в другой». Именно с помощью этого опыта Юнг смог измерить длины волн световых лучей разного цвета.


Дифракция - явление распространения

света в среде с резкими

неоднородностями (вблизи границ прозрачных

и непрозрачных тел,

сквозь малые отверстия).

ПРИНЦИП ГЮЙГЕНСА-ФРЕНЕЛЯ

Дифракционная картина является

результатом интерференции вторичных световых волн, возникающих в каждой

точке поверхности, достигнутой к какому-либо моменту данной световой волной.


Длина волны;

D- размер препятствия;

l-расстояние от препятствия до точки наблюдения результата дифракции (дифракционной картины)

Условие наблюдения дифракции:


Примеры дифракционных картин

от различных препятствий

от круглого отверстия;

от тонкой проволоки или щели;

от круглого экрана;


ДИФРАКЦИОННАЯ РЕШЕТКА

(СОВОКУПНОСТЬ БОЛЬШОГО ЧИСЛА РЕГУЛЯРНО РАСПОЛОЖЕННЫХ ЩЕЛЕЙ И ВЫСТУПОВ, НАНЕСЕННЫХ НА НЕКОТОРУЮ ПОВЕРХНОСТЬ)

ПРОЗРАЧНЫЕ

ОТРАЖАТЕЛЬНЫЕ

Штрихи наносятся на зеркальную (металлическую) поверхность

Штрихи наносятся на прозрачную (стеклянную) поверхность


ФОРМУЛА ДИФРАКЦИОННОЙ РЕШЕТКИ

dsinα=n

d- период дифракционной решетки;

n- порядок максимума;

Угол, под которым наблюдается максимум дифракционной решетки;

Длина волны.

Разложение белого света в спектр


Задачи на дифракцию света

1. На поверхности лазерного диска

видны цветные полоски.

Почему?

2. Подумайте как можно быстро

изготовить дифракционную решетку.


Ответы на задачи

1. Поверхность лазерного диска состоит из ячеек, которые играют роль щелей дифракционной решетки. Цветные полосы – это дифракционная картина.

2. Если посмотреть сквозь ресницы глаз на яркий свет, то можно наблюдать спектр. Ресницы глаз можно считать «грубой» дифракционной решеткой, так как расстояние между ресничками глаза достаточно большое.


Задачи на дифракцию света

1. НА ДИФРАКЦИОННУЮ РЕШЕТКУ,

ИМЕЮЩУЮ 500 ШТРИХОВ НА КАЖДОМ МИЛЛИМЕТРЕ,

ПАДАЕТ СВЕТ С ДЛИНОЙ ВОЛНЫ450 НМ.

ОПРЕДЕЛИТЕ НАИБОЛЬШИЙ ПОРЯДОК МАКСИМУМА,

КОТОРЫЙ ДАЕТ ЭТА РЕШЕТКА.


  • 2. Дано СИ Решение
  • d= мм= м Максимальный порядок max можно
  • найти взяв максимальный угол
  • =450нм= 45*10 -8 м при прохождении через щели
  • n max - ? решетки т.е. α max =90 0
  • dsinα= n ; n max = ;
  • n max = =4
  • Ответ: n max =4

  • § 48 - 50
  • Экспериментальные задачи:
  • В куске картона сделайте иглой отверстие и посмотрите через него на раскалённую нить электрической лампы. Что вы видите? Объясните. Посмотрите на нить электрической лампы через птичье перо, батистовый платок или капроновую ткань. Что вы наблюдаете? Объясните.
  • В куске картона сделайте иглой отверстие и посмотрите через него на раскалённую нить электрической лампы. Что вы видите? Объясните.
  • Посмотрите на нить электрической лампы через птичье перо, батистовый платок или капроновую ткань. Что вы наблюдаете? Объясните.

Итоги урока:

  • Дифракция механических волн.

2. Опыт Юнга.

3. Принцип Гюйгенса – Френеля.

4. Дифракция света.

5. Дифракционная решетка.


  • На поверхность стекла наносят тонкую пленку


Просветленная оптика

Отражение света для крайних участков спектра - красного и фиолетового - будет меньшим. Объектив имеет сиреневый оттенок.



  • Отклонение направления распространения волн от прямолинейного у границы преграды (огибание волнами препятствий)
  • Условие: размеры препятствия должны быть сравнимы с длиной волны




Опыт Гримальди

  • В середине 17-го века итальянский ученый Франческа Мария Гримальди наблюдал странные тени от небольших предметов, помещенных в очень узкий пучок света. К удивлению ученого, эти тени не имели резких границ, а были почему-то окаймлены цветными полосами.

Условия наблюдения

  • - размеры препятствия должны быть соизмеримы с длиной световой волны
  • - расстояние от препятствия до точки наблюдения должно быть гораздо больше размеров препятствия

В результате дифракции накладываются световые волны, приходящие из разных точек (когерентные волны), и наблюдается интерференция волн



Дифракция проявляется в нарушении прямолинейности распространения света!


Принцип Гюйгенса Френеля

  • Каждая точка волнового фронта является источником вторичных волн, причем все вторичные источники когерентны.

  • Френель доказал прямолинейность распространения света и рассмотрел количественно дифракцию на различного рода препятствиях.


Особенности

дифракционной картины

Объяснение

Размеры изображения щели

больше размеров,

полученных путем

геометрических

построений

Вторичные волны заходят за

края щели


Особенности

дифракционной картины

Объяснение

В центре картины возникает

светлая полоса

Вторичные волны в

направлении,

перпендикулярном щели,

имеют одинаковую

фазу. Поэтому при их

наложении амплитуда

колебаний увеличивается


Особенности дифракционной

Объяснение

По краям картины - чередование

светлых и темных полос

Вторичные волны интерферируют

в направлении под углом к

перпендикуляру к щели,

имея некоторую разность фаз, от

которой зависит результирующая

амплитуда колебаний




  • Дифракция не позволяет получить отчетливые изображения мелких предметов, так как свет огибает предметы.
  • Изображения получаются размытыми. Это происходит, когда линейные размеры предметов меньше длины световой волны.

Разрешающая способность микроскопа и телескопа

Если две звезды находятся на малом угловом расстоянии друг от друга, то эти кольца налагаются друг на друга, и глаз не может различить, имеются ли две светящиеся точки или одна.


Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Интерференция механических волн и света. Учитель физики С.В.Гаврилова

Волновая оптика Волновая оптика – раздел оптики, в котором свет рассматривается как электромагнитная волна.

Повторение Что вы знаете про электромагнитные волны? Распространяющееся в пространстве электромагнитное поле. Скорость в вакууме самая большая.

Повторение Перечислите свойства электромагнитных волн. Отражаются; Выполняется закон прямолинейного распространения; Преломляются, отражаются, поглощаются; Плоскополяризованные; Интерференция и дифракция;

интерференция Механических волн Света Звука

Волны, имеющие одинаковые частоты и постоянную разность фаз, называются когерентными.

Явление интерференции возможно, если Наложение когерентных волн Когерентные волны Усиление или ослабление волн в пространстве Постоянное во времени явление взаимного усиления и ослабления колебаний в разных точках среды в результате наложения когерентных волн называется интерференцией. Условия интерференции

Условия интерференционных максимумов и минимумов Условие максимума Наблюдается светлая полоса d 2 , d 1 геометрический ход лучей; d=d 2 -d 1 геометрическая разность хода - разность расстояний от источников волн до точки их интерференции; Δ d = d∙n - оптическая разность хода – геометрическая разность хода, умноженная на относительный показатель преломления среды. Условие максимума Условие max - амплитуда колебаний частиц среды в данной точке максимальна, если разность хода двух волн, возбуждающих колебания в данной точке, равна целому числу длин волн.

Условия интерференционных максимумов и минимумов Условие минимума Условие минимума Наблюдается тёмная полоса Условие min - амплитуда колебаний частиц среды в данной точке минимальна, если разность хода двух волн, возбуждающих колебания в этой точке, равна нечетному числу длин полуволн

Распределение энергии при интерференции Волны несут энергию При интерференции энергия перераспре- деляется Концентрируется в максимумах, не поступает в минимумы

История открытия интерференции света Явление интерференции света было открыто в 1802 году, когда англичанин Т. Юнг, врач, астроном и востоковед, человек с очень разносторонними интересами, провёл ставший теперь классическим "опыт с двумя отверстиями". 13 июня 1773 г. – 10 мая 1829 г.

Интерференция света Световые волны от различных источников (кроме лазера) некогерентны Когерентность достигается разделением света от одного источника на части Интерференцией света называется явление наложения световых пучков, в результате которого образуется картина чередующихся светлых и темных полос.

Классический опыт Юнга «Я сделал маленькую дырочку в оконной ставне и покрыл ее куском толстой бумаги, которую я проколол тонкой иглой. На пути солнечного луча я поместил бумажную полоску шириной около одной тридцатой дюйма и наблюдал ее тень или на стене или на перемещаемом экране. Рядом с цветными полосами на каждом краю тени сама тень была разделена одинаковыми параллельными полосами малых размеров, число полос зависело от расстояния, на котором наблюдалась тень, центр тени оставался всегда белым. Эти полосы были результатом соединения частей светового пучка, прошедших по обе стороны полоски и инфлектировавших, скорее дифрагировавших, в область тени». Т. Юнг доказал правильность такого объяснения, устраняя одну из двух частей пучка. Интерференционные полосы при этом исчезали, хотя дифракционные полосы оставались. Этот опыт наглядно доказал, что свет - не поток частиц, как считалось со времен Ньютона, а волна. Только волны, по-разному складываясь, способны и усиливать, и гасить друг друга - интерферировать.

Интерференционная картина: чередующиеся светлые и темные полосы Классический опыт Юнга Волны интерферируют в области перекрытия Условие max: Условие min: d- оптическая разность хода волн - длина волны

цвет Длина волны, нм Частота,ТГц красный 760-620 385-487 Оранже вый 620-585 484-508 жёлтый 585-575 508-536 зелёный 575-510 536-600 голубой 510-480 600-625 синий 480-450 625-667 Фиолето вый 450-380 667-789 Изучая интерференционные полосы, Юнг впервые определил длину и частоту световых волн разного цвета. Современные значения даны в таблице.

С помощью своей теории интерференции Юнг впервые сумел объяснить хорошо известное явление – разноцветная окраска тонких плёнок (масляные плёнки на воде, мыльные пузыри, крылья стрекоз…)

Интерференция в тонких пленках Когерентные световые волны, отражающиеся от верхней и нижней поверхности, интерферируют Результат интерференции зависит от толщины пленки, угла падения лучей и длины волны света В белом света пленка имеет радужную окраску, т.к. толщина пленки неодинакова и интерференционные максимумы для волн разной длины наблюдаются в разных местах пленки

Кольца Ньютона. Волны 1 и 2 когерентны. Волна 1 отражается от границы стекло-воздух Волна 2 – от границы воздух- стекло Интерференци-онная картина возникает в прослойке воздуха между стеклянными пластинами

Спасибо за внимание Д.З. §67- 69